Conformally Flat Siklos Metrics Are Ricci Solitons

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Locally Conformally Flat Gradient Steady Ricci Solitons

In this paper, we prove that a complete noncompact non-flat conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. 1. The result A complete Riemannian metric gij on a smooth manifold M n is called a gradient steady Ricci soliton if there exists a smooth function F on M such that the Ricci tensor Rij of the metric gij is given by the Hessian of F : Rij = ∇i∇jF. (1....

متن کامل

Conformally Flat Manifolds with Nonnegative Ricci Curvature

We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...

متن کامل

Conformally flat metrics on 4-manifolds

We prove that for each closed smooth spin 4-manifold M there exists a closed smooth 4-manifold N such that M#N admits a conformally flat Riemannian metric.

متن کامل

Numerical Ricci - flat metrics on K 3

We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kähler parameters. We show that Kähler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T /Z2 orbifold with ma...

متن کامل

Einstein and Conformally Flat Critical Metrics of the Volume Functional

Let R be a constant. Let Mγ be the space of smooth metrics g on a given compact manifold Ω (n ≥ 3) with smooth boundary Σ such that g has constant scalar curvature R and g|Σ is a fixed metric γ on Σ. Let V (g) be the volume of g ∈ Mγ . In this work, we classify all Einstein or conformally flat metrics which are critical points of V (·) in Mγ .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2020

ISSN: 2075-1680

DOI: 10.3390/axioms9020064